OUTLINE OF COSA & CRECE COLLABORATION IN COLOMBIA FOR COSA GLOBAL REPORT

REPORT FINAL

Manizales (Colombia), 2013
Table of Content

1. COSA & CRECE collaboration in Colombia ... 2
2. Research Strategy: data gathering and treatment of the information 3
3. Monitoring the performance and assessing the impact of sustainability initiatives 5
4. Measuring sustainability ... 6
 4.1. Social Sustainability .. 7
 4.2. Environmental Sustainability ... 9
 4.3. Economic Sustainability ... 10
References ... 13

Table of figures

- Figure 1. Project timeline 2008-2012 ... 2
- Figure 2. Annual cycle of measurement ... 4
- Figure 3. Theory of Change of Sustainable Initiatives in the Coffee Sector 6
- Figure 4. Components of the Social Index ... 6
- Figure 5. Components of the Environmental Index .. 9
- Figure 6. Components of the Economic Index .. 11
Credits

About us

The Centre for Regional Entrepreneurial and Coffee Studies CRECE (www.crece.org.co) is a nonprofit organization based in Colombia, with 26 years of experience in socioeconomic research and consulting. Our work has been oriented to support decision-making processes for development by designing, collecting, processing and analyzing good quality information. Main research topics in regional development are Coffee and Agricultural economics, Social and Institutional development and Education studies. During the last decade, the Centre has been dedicated to M&E of development programs and measuring sustainability initiatives on agricultural and coffee sector.

Research team: Carlos Ariel García Romero, Gustavo Adolfo Ochoa Villegas, Julián García Cardona, Marly Tatiana Celis Galvis, Juan Carlos Mora Betancourt (Yair Soto Bulles and Edisson Steven Castro participated in the first two phases). José Leibovich Goldenberg directed the baseline study and Marcela Urueña Gómez has been the Executive Director of CRECE during the last two phases. The COSA President, Daniele Giovanucci, provided his time as well as his valuable permanent support, expertise and advice to the CRECE research team.

Qualitative research support: María Teresa Matijasevic and Mónica Ramirez Guerrero.

Quality control of data capturing: Angélica Gómez Rendón, Yaneth Cardona Orozco, Claudia Patricia Yepes.

Data recording: Andrés Martínez, Jhon Jaime Tabares López, Mauricio Orozco, Marcela Vargas Villegas, María Mercedes Vargas Villegas, Tatiana Loaiza.

Funders: The study has been developed thanks to the commitment of an Institutional Alliance conformed by the Colombian Coffee Growers Federation (Departmental Committees of Coffee Growers of Caldas, Huila, Nariño, Santander), Nestlé – Nespresso S.A., USAID – ACDI / VOCA and CRECE.

CRECE acknowledges the willingness of the 3.750 coffee growers that have supported the research by responding the interviews during the last four years.
1. COSA & CRECE collaboration in Colombia

The COSA initiative in Colombia began to be deployed in 2008 in an alliance with CRECE as a local partner, with the support of Colombian National Coffee Growers Federation1, Nestlé - Nespresso S.A and USAID - ACDI / VOCA. The research has been conducted as an M&E study in annual phases, gathering information directly from a sample of 3.372 small and medium coffee farmers in five coffee growing Departments, from numerous focus groups with farmers and interviews with sustainability chain agents. The main purpose is to monitor and assess the results of the adoption of certifications and codes of conduct as sustainability initiatives by farmers. The sample is divided in four certifications (Fair Trade Certifications, Organic, Rainforest Alliance and UTZ Certified) three codes of conduct (Nespresso AAA, 4C and Starbucks’s C.A.F.E. Practices) and their respective control groups conformed by conventional coffee farmers.

The research is divided into phases: Survey adaptation (2008), Baseline study (2009-2010), intermediate monitoring (2010-2011) and Impact evaluation (2011-2012). Initially, the COSA international methodology proposal was adapted to the Colombian context by holding a series of workshops conducted by COSA with organizations involved with the trade and the promotion of the specialty coffees. The phase I consisted of the baseline study, which described the economic, environmental and social conditions of the coffee growers in the initial stages of their participation in the sustainability interventions or initiatives compared to conventional producers. In phase II, a second round of the survey was carried on. Additionally, the baseline study results were presented in an international seminar; and important advances were made in the construction of models of analysis and interpretation. More recently, in phase III the first estimation of early impacts was implemented and results were discussed in a workshop with representatives of the initiatives.

To date, the collaborative research process COSA & CRECE can be considered a successful experience as a result of the combination of a qualified local team partnering with the global team, the good quality of the information obtained, and the commitment of both the supporting institutions and the coffee growers that yearly provide the information.

1 Committees of Coffee Growers in Caldas, Huila, Nariño and Santander Departments.
Lessons learned in measuring sustainability over time can be summarized as follows: (i) the evolution of coffee sustainability initiatives has been positive during the last four years, showing certain progress in applying good agricultural practices, and impacts seem to be in the expected direction; (ii) However, the nature and the durability of impacts are less clear and must be understood in order to have good results in the long term. Investment in this knowledge is likely to have a good return; and (iii) regarding sustainability, is crucial to know if organizations will be able to continue funding capacity building, inputs, technical assistance and credit. To support the understanding of the change, results suggest that the higher premiums coming from the sustainability programs are not the main driver of better economic situation for farmers. In addition to premiums, issues such as training in GAP as well as differential technical assistance and any other program input able to get higher productivity levels could be more plausible drivers of better economic, social and environmental conditions.

The survey evaluations have indicated that there is a trend toward multiple certifications at farm’s level (double, triple or even more certifications) in motivated by farmers expectative of improving their economic and social viability. Not only by reducing the risk of relying on a single scheme and assure a higher income through price premiums and access to new markets, but also to build economies of scale and gain some efficiencies at farm level. In terms of impact assessment, this behavioral could be associated in one hand to the gap at farm level between the volume of sustainable coffee that is produced as certified and actually purchased as certified for most of the sustainable initiatives. In the other hand to the fact that producers do not have to pay for the certifications and audit cost and have been receiving significant levels of aid in kind. Without any doubt the political economy effects of this situation must be analyzed carefully.

As a way of systematization of the experience, in next sections we briefly describe the strategy adopted to measure sustainability in Colombia, highlighting some aspects of design, gathering of information, field work and outcomes for the economic, social and environmental pillars promoted by the initiatives.

2. Research Strategy: data gathering and treatment of the information

The research has been conducted in annual cycles beginning after the sampling design was completed, as it is shown in the figure below. In terms of the sampling design, the target population was made up by the coffee growers that were about to start their participation in 2008 in any of seven sustainability initiatives in five Colombian regions (Caldas, Cauca, Huila, Nariño and Santander Departments). The sampling frame was built with a list of more than 20,000 coffee farms for the initiatives of interest, obtained from the Coffee Information System of Colombian Coffee Growers Federation. A probabilistic sampling process was implemented considering initiatives and regions as strata, confidence levels of 95% and errors less than 7%. The regions in the sample represent more than 60% of the certified farmers in the country.
Once the sampling design was completed in the first stage, each cycle begins by checking again the set of indicators’ and questions’ functionality, making just minor changes to the survey and adding relevant questions to adapt it to possible new requirements, which has been, for instance, the case of the question regarding the investment of extra money coming from premiums. Even though some necessary changes have made among cycles, it has been maintained the questionnaire structure and the comparability of main indicators over time. The questionnaire is structured in four modules and a number of sections and tables: (i) Module A ask about characteristics of the farmer and the farm. (ii) Module B, economic dimension, contains information regarding production costs, farm assets, market access, credit access, premiums, and income from coffee, among others. (iii) Module C, social dimension, asks for household composition, household assets, education, training, medical attention and workers conditions. And (iv) Module D, environmental dimension, consults environmental practices related to water and soil conservation, handling agrochemicals and fertilizers, reuse of waste and shade trees. This module also includes a route for the farm to verify some environmental practices, like those associated to soil conservation, and take measurement of coffee plants and shade trees to estimate carbon sequestration.

Once the survey adaptation is completed, the field work plan is revised and the field team re-trained for embedding experiences from the last round of the survey in the next one. Part of the re-training exercise consists of sharing experiences from past rounds between Field work team and Research team, which substantially contributes to generate feedback to improve the next survey. Quite more than that, this valuable interaction allows gaining understanding on how the interventions are evolving and provides signs to interpreting the results before starting a new phase of the research. As an example of this, when surveyors ask farmers about their perception of satisfaction or dissatisfaction with the participation in the programs, a myriad of comments arise on topics like premiums and accomplishment of the standards.

Next step in the cycle is socialization of Field work plan with the Regional Committees of the Colombian Coffee Growers Federation. After presenting the purpose and reach of the study to staff in Departmental Committees, farm’s location and farmer’s information in sample lists are verified to properly schedule the interviews with the coffee farmers before deploying the Field work operation. During the Field work phase, an experienced group of professionals composed by five supervisors and 20 enumerators conducts the interviews in the five regions. Simultaneously with data collection, information is registered in an electronic data capturing tool programed with numerous filters to

Figure 2. Annual cycle of measurement

![Image of annual cycle of measurement](image-url)
automatically verify quality control points for data collected. A second step of the Field work is the qualitative approach, which consists in conducting focus groups with coffee farmers and interviews with institutions’ representatives. This stage is directly managed by the research team and has the purpose of gather perceptions, explanations and opinions to properly interpret the quantitative information.

In processing and analysing data, it has been employed appropriate statistical and econometric techniques. Among the diversity of procedures used, it has been estimated models of participation by Propensity Score Matching for each one of the regions considered taking care of assuring the balance and the common support properties. Likewise, estimations of panel data and impact models of double and triple Differences-In-Differences are being developed in the third phase of the study to control for probable heterogeneity associated to previous differences between treated and untreated. All these instruments are intended to assure as accurate as possible estimations of impact of sustainability initiatives in the near future.

3. Monitoring the performance and assessing the impact of sustainability initiatives

The first step in order to monitor the performance and assess the impacts of the adoption of sustainable -certifications and verification- initiatives at the producer level was to define what variables or indicators would be measured to test standards effects? To avoid potential biases as much as possible and attribute outcomes and impacts directly to program interventions, it was build a catalogue of common actions between initiatives that should lead to changes in the farm situation on the three categories of social, economic and environmental impact. This exercise was made based on the information retrieved from the web pages of each initiative, research papers that have made either qualitative or quantitative comparisons between sustainable initiatives, interviews with stakeholders, the implementation of the ISEAL Impacts Code (ISEAL 2010), the COSA’s conceptual framework elaborated by the Committee and the previous CRECE’s know how about the development of sustainable initiatives in the Colombian’s coffee sector.

As the different schemes have made emphasis on different criteria according to its mission, market focus and scope, the main idea for assessing impacts were to assess separately both the changes or results that has come as a consequence of the participation in one specific initiative instead of measuring the compliance with the task or competitive requirements imposed by these initiatives to implement the entire GAP package. In sum, at farm level is expected that compliance with all GAP’s tasks and the participation into a program or project leaded by these initiatives will lead in the medium term to a more sustainable coffee production, with better quality, higher productivity and significant price premiums. Hence, it is expected that these benefits will have long term impacts in the
coffee grower’s livelihoods as they will improve their economic and social benefits while improve environmental conditions both at farm level as well as their communities.

Figure 3. Theory of Change of Sustainable Initiatives in the Coffee Sector

As it was depicted in the Figure above, in the left hand are listed resources, inputs and actions needed for producers to implement standards’ and certifications’ requirements. Example of inputs includes time for technical assistance, use of both materials as fertilizers and pesticides as well as construction of infrastructure for the milling and drying process, among others. Meanwhile, the output includes all the activities necessary to generate changes in knowledge and skills for achieving outcomes. For example, the adoption of GAP will lead to changes in farmers’ behaviour that will increase the real farmer income, increase farm productivity, improve workers conditions, enhance the levels of education or reduce deforestation, water contamination and waste production, among other variables. Finally, impacts refer mainly to long term changes in economic, social and environmental conditions of coffee growers.

Based on this logic framework was possible to construct a catalogue of longitudinal data which is composed by a list of key performance indicators that cover not only the compliance with the requirements imposed by the sustainable schemes but also the economic, social and environmental changes that occur as a result of the compliance of these requirements.

4. Measuring sustainability

The state of the research to date allows counting with more than one hundred reliable indicators about the three dimensions of sustainability (social, economic and environmental) that constitute the concept adopted by COSA initiative. Nevertheless, the search of a plausible measure of sustainability
is still part of research, due to the complexity of the concept from the perspective of its quantitative representation. To put it in practical terms, the categories “productivity” or “income” can give an idea of the economic performance, but they are not enough to encompass the economic sustainability. The same could be stated for certain recommended practices like, for instance, “use protective gear” and the social dimension; or for “use low-water pulping systems” and the environmental dimension. Accordingly, despite the importance of the simpler indicators, to answer the question whether the farms are becoming more sustainable, or not, by the accomplishment of the standards, an aggregate measure of social, economic and environmental sustainability is needed.

Consistently with this argument, aggregate indexes have been calculated and are being tested to measure the components of sustainability embedded in the catalogue of the standards. These indexes help to clarify how producers have changed their behaviour and have adopted new different production practices in order to improve their livelihoods. To integrate as much as possible the indicators representing both discrete as well as continuous variables, the method of Principal Component Analysis (PCA) for categories\(^2\) was used (converting all into categories) to calculate indexes for each one of the social, environmental and economic dimensions. Each index is composed by a list of categorical or converted numerical to categorical variables having a positive scale increasing for positive results, for instance, the variable productivity enters with five categories in the index going from lower to higher levels. Thus, each index scores from cero which represents the lower conditions for the set of indicators to one hundred which represent the best for each dimension.

4.1. Social Sustainability

In overall terms the social index improved nearly 17% between the baseline and the second follow up – from 56.2 to 65.7 respectively. Fourth main criteria composed this index: living conditions of the growers and their families, changes in wealth, access to training activities and workers’ living conditions. In sum, the criteria related to the workers’ employment conditions of at farm level witnessed substantial positive changes. Meanwhile, the three remaining criteria dealing to living conditions of the coffee grower and their families, the levels of wealth and access to training activities do not show important or substantial improvements.

As such, the impact assessment found evidence that employment conditions at farm level improving substantially for coffee workers. In this sense the five indicators that measure this criterion signaled important improvements between the baseline and the second follow up. As such, the availability of first-aid kids growth 17% among treated producers - from 33% to 51%; clean and safe places to live

\(^2\) The method is known as Polychoric correlations for ordered category data [Kolenikov, S., and Angeles, G. (2004)]. Main advantages are its capacity to summarize complex elements combining categorical and numerical responses facilitating to monitor sustainability over time, as well as its potential to be used as an aggregate indicator of impact. Of course, the method is not perfect, and one of the known cons is that the assumptions are not always appropriate, for example if the latent trait represented is truly discrete.
with adequate sanitation conditions and better access to camp (dwelling) conditions increased 23% -.
Similarly, access to washing facilities increased 5.3% while those issues related with training
given for the safe use of agrochemicals management and its handling increased 17% and 12% respectively; including cooking water discharged through pipe or clean, ventilated and safe places to
cook or access to water.

Figure 4. Components of the Social Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Conditions of the</td>
<td>Production of food staples at farm level for family consumption</td>
</tr>
<tr>
<td>household</td>
<td>Revenues from sales from other cash crops</td>
</tr>
<tr>
<td></td>
<td>There have been problems of insufficient food</td>
</tr>
<tr>
<td></td>
<td>Children under 18 years attended school</td>
</tr>
<tr>
<td>Wealth</td>
<td>Possession of household assets</td>
</tr>
<tr>
<td></td>
<td>Income dependence on coffee is less than 80%</td>
</tr>
<tr>
<td>Training</td>
<td>Has received training in health and welfare issues</td>
</tr>
<tr>
<td></td>
<td>Has received training in literacy issues (write and read)</td>
</tr>
<tr>
<td>Living conditions of the</td>
<td>The farms has a fireplace (living conditions)</td>
</tr>
<tr>
<td>workers</td>
<td>Water provided to workers is easily accessible</td>
</tr>
<tr>
<td></td>
<td>There is a first aid kit at the farm</td>
</tr>
<tr>
<td></td>
<td>Restrictions on the application of agrochemicals</td>
</tr>
<tr>
<td></td>
<td>No. of protective equipment for application of agrochemicals</td>
</tr>
</tbody>
</table>

Source: CRECE

There were mixed results in the performance of the four indicators that compose the criteria of the living conditions of the coffee growers and their families. In this sense, evidence showed that there were a significant higher number of certified farms that reported having planting cash crops – 10 percent. Meanwhile there were not substantial changes in the coffee growers’ efforts to produce food staples to improve food’s consumption at the household level and increase their levels of food security – 1.9 percent³. Referring to the levels of food security, measured through food intake, evidence shows a negative outcome as there was an increase in the number of producers that reported that at least during one day each year do not have enough food to ate at home – from 94 percent to 97 percent of the certified producers between the baseline and the second follow up. Also with negative number result the decrease in the share of the population under 18 years that were studying during the surveys – from 58 percent to 48 percent during the baseline and the second follow up respectively.

There were not changes in the level of wealth while the dependency of coffee decreased slightly. As such, the accumulation of household assets (including appliances as televisions, fridge, stove, washing machine, computer, internet access, and cell phone) as well as the number of agricultural assets (including, among others, transport assets – car and motorcycle, dryer-silos, pulping machines, motor, chain saw, machete, toaster, tilts, electric plant, and animal stock) do not show substantial changes among surveys.

³ These number should be seen cautiously as 94% of the producers were producing food’s for own consumption during the baseline while this number was 96% during the second follow up.
Finally, there were also mixed results between the indicators that composed the training criterion. In this sense, the survey found that the share of the time of total training destined to literacy programs decreased from 15 percent during the baseline to 3.7 percent during the second follow up. Meanwhile, the hours of training dedicated to issues related to health and welfare increased 6 percent, from 24 percent to 30 percent respectively. In general, most of the training time has covered farm management practices and environmental topics respectively.

4.2. Environmental Sustainability

The environmental index has highly increased by 41.5 percent between the baseline and the second follow-up, changing from 42.8 to 60.8 points, which reveals that more farmers are adopting environmental practices each year. This index is built using 26 criteria that are summarized in the 8 categories and 12 indicators listed in the figure below. The categories value the accomplishment of the following criteria: implementing of water consumption practices, having a program for recycling and reuse of solid waste, adopting soil conservation practices\(^4\), installing energy stoves to cook, following good practices of management agrochemicals\(^5\) and overall environmental management and biodiversity like having an environmental plan and training received in environmental issues.

Figure 5. Components of the Environmental Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption</td>
<td>At least 2 conservation practices carried out</td>
</tr>
<tr>
<td>Recycling</td>
<td>There is a recycling program at the farm</td>
</tr>
<tr>
<td>Soil conservation practices</td>
<td>No. of practices carried out among 10 recommended</td>
</tr>
<tr>
<td>Energy</td>
<td>Efficient stoves for cooking have been installed</td>
</tr>
<tr>
<td>Management of Agrochemicals</td>
<td>No. of preventive practices among seven recommended</td>
</tr>
<tr>
<td>Environmental Management</td>
<td>Has an environmental plan or an environmental map</td>
</tr>
<tr>
<td></td>
<td>Has received training in environmental issues</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>Has implemented reforestation plans at farm level</td>
</tr>
<tr>
<td></td>
<td>Has nursery plants</td>
</tr>
<tr>
<td></td>
<td>Has planted shade - trees</td>
</tr>
<tr>
<td></td>
<td>Has implemented shade management activities</td>
</tr>
<tr>
<td></td>
<td>Has implemented practices to protect specific farm areas</td>
</tr>
</tbody>
</table>

Source: CRECE

The level of the index in the baseline means that the farmers were yet adopting some of the practices, especially those related to soil conservation. Although the change between the baseline and the second follow-up is significant - 20 percent more farmers adopted practices -, there is still a gap to achieve the one hundred percent of accomplishment of the environmental standards in the

\(^4\) Irrigation, Tanks or wells for water harvesting, Contour in plants, Protection areas, Ground cover, De-pulping or milling with low water use, Drainage ditches, Contour planting, Live fences and Others.

\(^5\) Keep records related of the application of agrochemicals, has a designated area for cleaning equipment for pest controls, has a treatment system of water to cleaning the equipment of agrochemicals, applies agrochemicals under technical recommendation, there were no reported illnesses associated with pesticide application, has training to handle agrochemicals, there are restrictions related to the application of agrochemicals for women, children and others.
fourth year of participation. Among the list of practices measured, the most important drivers boosting the index have been (i) two of the seven practices consulted to appropriate manage agrochemicals: applying under technical recommendation by 23 percent more of the farmers and no related illnesses reported by 52 percent more; (ii) four of the ten soil conservation practices: 37 percent more of the farmers make contour in plants, 22.9 percent more report cover the ground, 28.5 percent more are de-pulping or milling with low water use and 34.1 percent more are installing live fences; and (iii) two of five issues of environmental management: 40.6 percent more of the farmers in the initiatives have now environmental plans for their farms and 20 percent more have implemented shade management activities.

On the other hand, some practices are being more slowly implemented by the coffee farmers: designating protection areas, training in environmental issues, keeping records of application of agrochemicals, designating areas to apply agrochemicals, having treatment systems for cleaning equipment of agrochemicals applying, training in handling of agrochemicals, adopting restrictions for applying, or overall training in environmental issues.

In sum, the environmental index shows progress in the adoption of the standards by farmers participating in the sustainability initiatives. It has to be mentioned however that the version of the index presented contains the seven initiatives in evaluation, which in fact have differences in the level of this measure. This means that the environmental practices adoption seems to be faster for certifications, in which the accomplishment is mandatory, compared to codes of conduct, which allow more gradualism. Moreover, the farms participating in the programs are getting better levels of the index compared to conventional farms, an impact evaluation issue that is being treated in more detailed works.

4.3. Economic Sustainability

In overall terms the social index for treated or certified producers improved nearly 8% between the baseline and the second follow up – from 59.56 to 64.19 respectively. Fourth main criteria composed this index: traceability, strengthening of the economic capabilities, profitability, productivity and knowledge of the market.

The criterion that measured profitability, composed by the three economic measures gross revenue, cost of production and net income, showed an increase of 21 percent between the baseline and the second follow up. Meanwhile there were mixed results among the indicators that composed the other criterions. In this sense, explained by severe climatic conditions, extreme high fertilizer prices, added to the recurrence of coffee berry borer infestation and a severe outbreak of coffee rust, the productivity indicator fall nearly 13 percent.
The criterion related to the knowledge of the market presented mixed results as includes indicator that measured changes in the familiarization of the coffee growers with the farm gate market prices or the average prices in the region, national average coffee price, buyer’s prices to other stakeholders and international prices. In this sense three issues must be highlighted. In first place there was an increase of nearly 14 percentage points in the share of treated producers that know the price to which the buyers sold their coffee to other upstream actors of the value chain – from 2% to 15% between the baseline and the second follow up respectively. Second, there were an slightly increase in the number of producers that recognizes that known the international price as well as their farm gate prices, from 57% to 64% and from 90% to 94% respectively. Third, regarding the national average price or the reference prices that is established by the National Federations of Coffee Growers, there was a negative change in the share of producer that knows that local prices are based on a base price. As such, this share was 53% during the baseline while reduced to 51% during the second follow up.

Following with the eight indicators that compose the criterion related to strengthening of the economic management capabilities there were also mixed results. As such, there were positive changes between the baseline and the second follow up, although form different magnitude in subjects related to: the share of producer that received training in areas related to market’s issues – from 11% to 28%; the share of producers keeping records of fertilization – from 27% to 48%, or those who fertilize their trees according to technical assistance suggestions – 50% to 66%, as well as a reduction in the share of producers who reported higher levels of coffee berry borer infestation – from 54% to 42%; the share of producers with lower levels of coffee of second quality – from 95% to 67%; and the increase in the share of producers who received a higher number of hours destined to training in keeping records and management – from 37% to 41%. However, some indicators worsened its performance as the increase in the share of producers who reported an increase in the levels of rust infection – from 38% to 65%.

Source: CRECE
Finally, regarding to last criterion related to traceability issues, should be highlighted that there were an increase of 9 percentage points in the number of producer who had more credit opportunities – from 51% to 59% between the baseline and the second follow up respectively. Meanwhile the indicator that try to capture information related to the coffee growers’ efforts to tried to find new customers for his own show a negative performance of 2 percentage points. As such, while at the baseline the share of the producers that try to find a new buyer were 4%, this share were 3% during the second follow up.
References

ISEAL (2010) Assessing the impacts of social and environmental standards systems v 1.0. ISEAL Code of Good Practice. 28

